GASDYNAMICS OF A PLASMA IN A MULTIPLE-MIRROR MAGNETIC
TRAP WITH "POINT" MIRRORS
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Equations are derived for the gasdynamics of a dense plasma confined by a multi-
ple-mirror magnetic field. The limiting cases of large and small mean free paths
have been analyzed earlier: A << I, and A >> Lk, where I is the length of an in-
dividual mirror machine, 1, is the size of the mirror, and k is the mirror ratio.
The present work is devoted to a study of the intermediate range of mean free
paths 7o << X << lk. It is shown that in this region of the parameters the pro-
cess of expansion of the plasma has a diffusional nature, and the coefficients

of transfer of the plasma along the magnetic field are calculated.

The possibility of the longitudinal thermal insulation of a plasma in open systems us-
ing a corrugated (multiple-mirror) magnetic field has been under discussion lately. The
interest in{this means of confinement is connected with the successes of experiments [1-3]
which have been performed to verify the predictions of the theory [4-7]. One of the results
of the theory consists in the fact that when a large mirror ratio k = Hmax/Hmin >> 1 is
specified the optimum mode of thermal insulation is achieved in a multiple-mirror trap with
"point" mirrors. Mirrors whose length o, is much less than the corrugation period I of the
field are conventionally called point mirrors in [5, 6].

In addition to the most efficient confinement, the point mirrors are advantageous from
the aspect of energy consumption required to create the magnetic field. This is important
for a plasma with parameters close to thermonuclear

~10®¥cm-3 T =05 kev (1
when large magnetic fields and mirror ratios are needed for good thermal insulation. The
theory of plasma confinement by a corrugated field presented in [5, 6] pertain to the two
opposite limiting cases: the case of purely Knudsen flow, which is realized with large mean
free paths A >> 1k, and the mode when the flow is hydrodynamic everywhere along a field tube
(A << 1g). Now if, having in mind the region of parameters (1), one takes 7, = 5 cm and
7 = 50 cm for the estimates of the actual dimensions, then it turns out that as the plasma
is heated a state is rapidly established where the flow has a Knudsen nature only at the
mirrors, whereas in the other regions it has a hydrodynamic nature. This intermediate range
of mean free paths

Lh<hLlk (2)
was not studied in [5, 6].

The magnetic field confining the plasma will be taken as assigned. In the configuration
of the field lines it represents a multiple-mirror trap consisting of a large number of mir-
ror machines joined end to end. Since in the range of mean free paths lo << XA the dynamics
of the plasma expansion should not depend on the size and shape of a mirror, we will solve
the problem in the null approximation with respect to the parameter lo/A, assuming that lo =
0 and the field in the space between mirrors is uniform.

The procedure for the derivation of the gasdynamic equations describing the dispersion
along a field tube of a plasma cluster with a characteristic longitudinal scale L is analo-
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gous to the system of calculations used in [5, 6]. First one must solve the steady-state
problem and relate the fluxes of matter q, and energy Q, of the two plasma components having
the drops in concentrations An, and temperatures AT, (the subscript denotes the sort of part-
icles, a = i, e) and the potential A@ between the centers of two adjacent mirror machines.

At this stage of the calculations one must assume that the differences An,, AT,, and A $are
assigned and do not depend on time.

For determinacy we introduce the coordinate s along the field tube in such a way that
a mirror separating two mirror machines is located at the point s = 0. Then

Ana:‘_na(l/z)"‘na('—l/z) (3)
AT, =T,(112) — Ty (— 1/2)
Ap = @(l/2) —g(~—1/2)

As in [5, 6], we will assume that the plasma cluster is sufficiently extended and occu-
pies a large number of mirror machines (N = L/Z > 1). 1In this. case the values of g Ty
and ¢ vary slightly in the scale of a single mirror machine (Ana << ng, AT, << Ty). The na-
ture of their variation is considerably different in different sections of a field tube: with-
in the mirror machines where the flow has a collisional nature the parameters ngs Ty, and @
vary smoothly in accordance with the equations of two-fluid hydrodynamics. 1In the region of
a mirror the hydrodynamic approximation breaks down. Here the plasma parameters can undergo
sharp jumps whose spatial scale is on the order of the size of the mirror. Therefore, in a
solution of the problem in a null approximation with respect to Zo/X one must take into ac—
count the fact that the boundary values of ng,, T4, and ¥ may not coincide to the left and to
the right of the mirror.

We can determine the jumps in these values upon the transition through a mirror by the
equalities

80 = na (++ 0) — na (— 0), 8T4 = T (+ 0) — T, (— 0)
6 = ¢ (+ 0) — g (—0)

For the further calculations we will use the assumption that the mirror ratio is large
(k >> 1). This assumption allows us to find in explicit form the connection between the
fluxes of matter and energy, on the one hand, and the values (4), on the other. Let us ex-
amine the flow of any component of the plasma through a mirror. If the mirror ratio were
equal to infinity, then the exchange of particles between plasma machines would be absent and
a Maxwellian velocity distribution with parameters corresponding to the given mirror machine
would be established within each of them. With a finite mirror ratio the Maxwellian distri-
butionnear a mirror is disturbed by the flux of particles from the next mirror machine which
has different values of the parameters (concentration, temperature, and potential). The dis-
turbance in the distribution function is proportional to the difference in the values of the
parameters and also, since the mirror ratio is large, to the smallness of the number of part-
icles ~n/k penetrating from mirror machine to mirror machine

(4)

FO) = Far (¥) = 87 (v) - A2

In the calculation of the fluxes of matter and energy the contribution to the integral
from the function f(v) gives a narrow region of phase space v, ?/v? = sin®? 6 < 1/k. Keeping
this in mind, one can verify that the allowance for a disturbance 8§f(v) would lead to the
appearance of terms containing the small value k™' in the equations for the fluxes. There—
fore, the fluxes of matter and energy can be calculated with an accuracy of the terms of
order k™' by assuming that the distribution functions near a mirror are Maxwellian. The re-~
sults of these calculations performed in a linear approximation with respect to 8ny, 8Ty,
and & have the form

n T Y2 , 8n { 87 &8
—_ . e q a L a P 5
9e = k 2:|tma) ( n, + 2 T, - Ta>_ (5)
. naTa Ta e 6"‘& 6Tc edg
Qo= — k (231:ma ) (2 n, +3 T, +2 T, )
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In the mode when the plasma cluster expands freely the condition of quasineutrality is
expressed by the equality qe = q; = g, which allows one to eliminate from (5) the jump in
potential at a mirror. Equations (5) take the form '

7= *m[(h—l—ﬂ)én + -Z—(ﬁ?’e+6Ti)]
Qc=— ‘zlci‘(i::e ) 87, (6)

T. \Ys
Qs == () 2+ T 0+ 3ndT, - nd1 |

i
Terms containing the small value me/mj are omitted in Egs. (6).

Now we can find the connections between the jumps at a mirror, which figure in (6), and
the assigned drops in the parameters (3) between adjacent mirror machines. The transition
from free flow at the mirrors to hydrodynamic flow in the central section of a mirror mach-
ine takes place near a mirror at distances on the order of the effective mean free path.

We can take the effective mean free path as the distance A ¢¢ ™ Ak in which a flying parti-
cle is scattered through an angle A?6 ~ k™' and enters the region of phase space occupied

by trapped particles. If Agoff << I, and the inequality (2) guarantees that this condition
is satisfied, then the equations of two-fluid hydrodynamics can be used everywhere within
the mirror machines to describe the plasma flow [8].

We can join the steady-state solutions for the regions of Knudsen and hydrodynamic
flows by using the fact that the fluxes of matter and energy are constant along a field
tube with good accuracy. The variations in these values along the length of a mirror mach-
ine are quantities of the second order of smallness with respect to the parameter /L, where-
as the fluxes are values of the first order of smallness. By equating the hydrodynamic equa-
tions for the fluxes of matter and energy with the values of (6) found we obtain equations
describing the temperature distributions in the hydrodynamic region:

aT, 5
— %y 5%+ 5T = Q. )
The thermal-conductivity coefficients are given by the equations
T T
=163 —— " %,=093 —Zr
x; 1. 63 Ae‘m,;l’ * e Ae’me‘/’

These equations must be supplemented by the condition of steadiness of the flow. Ne-
glecting viscosity, it comes down to the requirement of constancy of the total pressure
along a field tube

aisn(Te“I'Ti):O (8)

We integrate Egs. (7) and (8) with respect to s between the centers of the mirror mach-
ines (from the point s = —1/2 to s = 1/2), excluding a region of width §(Agff << 8 << 1) on
both sides of the mirror where the hydrodynamic approximation breaks down. As a result we
obtain

ff“[ATa_Ta(a)"{"Ta(—‘&)] =Qa—%qTa

n(AT, + AT}) -+ (T, + T9) An = (T + T) [n (8) —n (—8)] -+
+ 0T, (8) — T (—8)] + n [T5 (8) — Ti (— 8)]

(9)

Since § << I, the differences Ta(6) —‘Ta(—ﬁ) and n(8) — n(—S) are equal to the jumps
(4) in concentration and temperatures at the mirror with the accuracy of terms of order
§/1. With allowance for this we can rewrite (9) in the form

e (AT, —8T.) = Qs — T (10)
T.An + nAT, = n (8T, + 8T;) + (T, + T;) 6n
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Together with Egqs. (6), Eq. (10) forms an algebraic system of equations relating the
jumps 6n and 8T, with the total drops An and AT,.

The solutions of this system, which are, in general, cumbersome, are congiderably sim-
plified if the dimensionless parameter Ak/l, which figures in (10), is small or large compared
with unity. For example, in the case when Ak/7l >> 1 the solutions have the form

on = An, 8T, = AT, (1)

In this case the entire drop in density and temperatures occurs in the region of the
mirror. In the opposite limiting case of Ak/7 << 1 the changes in n and T, are distributed
more uniformly along the mirror machines, while the jumps at the mirror are

- AT, AT,
6n'=%~(An+n < ),

Te+ Ti
2

8T; = 5 [ S (Ty + T + AT + AT

E T ¥a
8T, = —¢ (3-;”—> AT, | (12)
e

By substituting Eqs. (11) or (12) into Eqs. (6) we arrive at the desired expressions
for .the fluxes of matter and energy for the assigned drops An and AT, between the middles
of the mirror machines:

Mo/l |

g = — & @amT) (T, + T An + n (AT, + ATy

Q.= — .21 (13)
T, \i :

0 = — @291?(%7) (To + T3) An +n (AT, 4 AT;)]

Me /11

’ 5 T _1fy - . -
q=_(ﬂ?m;c 1) {(TE+T1)AH+—;—(AT8+AT1)J

o 2T \Ya
0=~ (7).
T. \Y:
0i = — 5 (gasr) 1o+ T An 38T, + AT,)

The further procedure for the derivation of the equations describing the time and space
distribution of the plasma parameters is analogous to that described 4n [5, 6]. We will
confine ourselves to the consideration of one particular case, which is of practical inter-
est, of the evolution of rather long clusters with L >> Z(mi/me)’/“, when the temperatures

of the electrons and ions are able to become equal to each other and equalized along the
magnetic field in the time of expansion:

T,=T=T, Lo (14)

Under these conditions the dynamics of the plasma cluster is described by a single equa-
tion for the concentration. 1In order to derive it we write the equation of balance of the

number of particles in the segment of a field tube included between the middles of two adja-
cent mirror machines:

1/2 ‘
a1 1/2)—q(—1/2
?‘JT(T S nds):.—— q(1/2) lq( /2) (15)

—e
We introduce the value
a 1
e =7 1a(/2)—g(—1/2)]

with which one can formally operate as with an ordinary derivative.

centration varies little along the length of one mirror machine
that

Since the plasma con-
» one can assume in Eqs. (13)
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—I/2

Substituting these equations into (15) and keeping (14) in mind, we obtain the equation
for m:

Dy = 81 2T \Y=
o s= g () o oAUk (16)
on D a2n D = ke

T Y e 1 (2T \%
i m=7{mq)’“”<”<m

' The equation formulated describes the process of diffusional dispersion of the plasma
along the magnetic field. The inequalities pertaining to the coefficient of diffusion are
obtained through a combination of conditions (2) and the inequalities Ak/Z << 1 and Ak/Z >>
1 which were used in solving the system of equations (10). For intermediate values of the
parameter Ak/l the values of the coefficient of diffusion lie in the range of Dy < D < Dj,

By using Eq. (16) one can estimate the velocity of expansion u and the time of longi-
tudinal confinement T * L/u of the plasma by the corrugated field in the range of mean free
paths (2):

v/ L Lk
U~ Uri 77

vp; 4

It is assumed that the length of the imstallation is equal in order of magnitude to the
length L of the plasma cluster.

From the estimates presented it is seen that with a transition from a smooth configura-
tion of the field to a multiple-mirror configuration with point mirrors the time of longi-
tudinal confinement of the plasma increases considerably and grows in proportion to the prod-
uct of the number of mirror machines times their mirror ratio.

At the limits of their applicability with respect to mean free path (2) the equations
obtained coincide with the corresponding equations derived in [5, 6] with the accuracy of
the numerical coefficient. The results presented are intermediate between the purely kine-
tic and hydrodynamic modes analyzed in [5, 6], and along with the results of these works
they give a complete picture of the dynamics of plasma flow in a strongly corrugated (k >> 1)
magnetic field. ’ :

The authors thank D. D. Ryutov for the statement of the problem and interest in the
work.
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